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CHAPTER 2:  Introduction 
 
This action’s objective is the development of a Desertification Decision Support 
System.  This system will combine the knowledge acquired through all previous 
actions and will be based on the rules and guidelines depicted in the Desertification 
Risk Monitoring Model, in order to provide support to any decision-making body, 
planning to take actions against desertification.   
 
The Decision Support System that includes the Spatial Multi-criteria Weighed Model 
will be developed in order to describe the above-mentioned methodology and depict 
the Driving Forces, the Pressures and the Impacts on Desertification Risks. 
 
This action will start by analyzing decision requirements and describing the Decision 
Support Algorithm based on the Model’s standardized procedures and rules.   
 
With rapid increases in population and continuing expectations of growth in 
the standard of living, pressures on natural resource use have become 
intense. For the resource manager; the task of effective resource allocation 
has thus become especially difficult. Clear choices are few and the increasing 
use of more marginal lands puts one face-to-face with a broad range of 
uncertainties. Add to this a very dynamic environment subject to substantial 
and complex impacts from human intervention, and one has the ingredients 
for a decision making process that is dominated by uncertainty and 
consequent risk for the decision maker. 
 
In recent years, considerable interest has been focused on the use of GIS as 
a decision support system. For some, this role consists of simply informing 
the decision making process. However it is more likely in the realm of 
resource allocation that the greatest contribution can be made. 
 
Over the past several years, the research staff at the Clark Labs have been 
specifically concerned with the use of GIS as a direct extension of the human 
decision making process--most particularly in the context of resource 
allocation decisions. However our initial investigations into this area 
indicated that the tools available for this type of analysis were remarkably 
poor. Despite strong developments in the field of Decision Science, little of 
this had made a substantial impact on the development of software tools. 
And yet, at the same time, there was clear interest on the part of a growing 
contingency of researchers in the GIS field to incorporate some of these 
developments into the GIS arena. As a consequence, in the early 1990s, we 
embarked on a project, in conjunction with the United Nations Institute for 
Training and Research (UNITAR), to research the subject and to develop a 
suite of software tools for resource allocation. These were first released with 
Version 4.1 of the MS-DOS version of IDRISI, with a concentration on 
procedures for Multi-Criteria and Multi-Objective decision making-an area 
that can broadly be termed Decision Strategy Analysis. Since then, we have 
continued this development, most particularly in the area of t Uncertainty 
Management. 
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Uncertainty is not simply a problem with data. Rather, it is an inherent 
characteristic of the decision making process itself. Given the increasing 
pressures that are being placed on the resource allocation process, we need 
to recognize uncertainty not as a flaw to be regretted and perhaps ignored, 
but as a fact of the decision making process that needs to be understood and 
accommodated. Uncertainty Management thus lies at the very heart of 
effective decision making and constitutes a very special role for the software 
systems that support GIS. The following discussion is thus presented in two 
parts. This chapter explores Decision Strategy Analysis and the following 
chapter discusses Uncertainty Management. 
 
Decision Theory is concerned with the logic by which one arrives at a choice 
between alternatives. What those alternatives are varies from problem to 
problem. They might be alternative actions, alternative hypotheses about a 
phenomenon, alternative objects to include in a set, and so on. In the 
context of GIS, it is useful to distinguish between policy decisions and 
resource allocation decisions. The latter involves decisions that directly affect 
the utilization of resources (e.g., land) while the former is only intended to 
influence the decision behavior of others who will in turn make resource 
commitments. GIS has considerable potential in both arenas. 
 
In the context of policy decisions, GIS is most commonly used to inform the 
decision maker However; it also has potential (almost entirely unrealized at 
this time) as a process modeling tool, in which the spatial effects of 
predicted decision behavior might be simulated. Simulation modeling, 
particularly of the spatial nature of socio-economic issues and their relation to 
nature, is still in its infancy. However; it is to be expected that GIS will play an 
increasingly sophisticated role in this area in the future. 
 
Resource allocation decisions are also prime candidates for analysis with a GIS. 
Indeed, land evaluation and allocation is one of the most fundamental activities of 
resource development (FAO 1976). With the advent of GIS we now have the 
opportunity for a more explicitly reasoned land evaluation process. However. without 
procedures and tools for the development of decision rules and the predictive 
modeling of expected outcomes, this opportunity will largely go unrealized. GIS has 
been slow to address the needs of decision makers and to cope with the problems of 
uncertainty that lead to decision risk In an attempt to address these issues, the Clark 
Labs has worked in close collaboration with the United Nations Institute for Training 
and Research (UNITAR) to develop a set of decision support tools for the IDRISI 
software system. 
 
Although there is now fairly extensive literature on decision making in the 
Management Science~ Operations Research and Regional Science fields (sometimes 
linked together under the single name Decision Science), there is unfortunately a 
broadly divergent use of terminology (e.g., see Rosenthal, 1985). Accordingly, we 
have adopted the following set of operational definitions which we feel are in 
keeping with the thrust of the Decision Science literature and which are expressive of 
the GIS decision making context. 
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CHAPTER 3. Requirements Analysis / Algorithm description 
 
Deliverable Requirements Analysis / Algorithm description 

Abstract 

This action will start by analyzing decision requirements and describing the Decision 
Support Algorithm based on the Model’s standardized procedures and rules.   
 

DSS, ALGORITHM 

 
Definitions Decision 
 
Decision 
A decision is a choice between alternatives. The alternatives may represent different 
courses of action, different hypotheses about the character of a feature, different 
classifications, and so on. We call this set of alternatives the decision frame. Thus, 
for example, the decision frame for a zoning problem might be commercial 
residential industrial. The decision frame, however, should be distinguished from the 
individuals to which the decision is being applied. We call this the candidate set. For 
example, extending the zoning example above, the set of all locations (pixels) in the 
image that will be zoned is the candidate set. Finally, a decision set is that set of all 
individuals that are assigned a specific alternative from the decision frame. Thus, for 
exammple all pixels assigned to the residential zone constitute one decision set 
Similarly, those belonging to the commercial zone constitute another. Therefore, 
another definition of a decision would be to consider it the act of assigning an 
individual to a decision set Alternatively, it can be thought of as a choice of 
alternative characterizations for an individual. 
 
Criterion 
A criterion is some basis for a decision that can be measured and evaluated. It is the 
evidence upon which an individual can be assigned to a decision set. Criteria can be 
of two kinds: factors and constraints, and can pertain either to attributes of the 
individual or to an entire decision set. 
 
Factors 
A factor is a criterion that enhances or detracts from the suitability of a specific 
alternative for the activity under consideration. It is therefore most commonly 
measured on a continuous scale. For example a forestry company may determine 
that the steeper the slope the more costly it is to transport wood. As a result, better 
areas for logging would be those on shallow slopes -the shallower the better. Factors 
are also known as decision variables in the mathematical programming literature 
(see Feiring, 1996) and structural variables in the linear goal programming literature 
(see Ignizio, 1985). 
 
Constraints 
A constraint serves to limit the alternatives under consideration. A good example of a 
constraint would be the exclusion from development of areas designated as wildlife 
reserves. Another might be the stipulation that no development may proceed on 
slopes exceeding a 30% gradient. In many cases, constraints will be 
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expressed in the form of a Boolean (logical) map: areas excluded from 
consideration being coded with a 0 and those open for consideration being 
coded with a 1. However, in some instances, the constraint will be expressed 
as some characteristic that the decision set must possess. For example, we 
might require that the total area of lands selected for development be no 
less than 5000 hectares, or that the decision set consist of a single 
contiguous area. Constraints such as these are often called goals (Igniziq 
1985) or targets (Rosenthal, 1985). Regardless, both forms of constraints 
have the same ultimate meaning--to limit the alternatives under 
consideration. 
 
Although factors and constraints are commonly viewed as very different 
forms of criteria, material will be presented later in this chapter which shows 
these commonly held perspectives simply to be special cases of a continuum 
of variation in the degree to which criteria tradeoff in their influence over the 
solution, and in the degree of conservativeness in risk (or alternatively, 
pessimism or optimism) that one wishes to introduce in the decision strategy 
chosen. Thus, the very hard constraints illustrated above will be seen to be 
the crisp extremes of a more general class of fuzzy criteria that encompasses 
all of these possibilities. Indeed, it will be shown that continuous criteria 
(which we typically think of as factors) can serve as soft constraints when 
tradeoff is eliminated. In ecosystems analysis and land suitability assessment 
this kind of factor is called a limiting factor, which is clearly a kind of 
constraint. 
 
Decision Rule 
The procedure by which criteria are selected and combined to arrive at a 
particular evaluation, and by which evaluations are compared and acted 
upon, is known as a decision rule. A decision rule might be as simple as a 
threshold applied to a single criterion (such as, all regions with slopes less 
than 35% will be zoned as suitable for development) or it may be as complex 
as one involving the comparison of several multi-criteria evaluations. 
 
Decision rules typically contain procedures for combining criteria into a single 
composite index and a statement of how alternatives are to be compared 
using this index. For example, we might define a composite suitability map 
for agriculture based on a weighted linear combination of information on 
soils, slope, and distance from market. The rule might further state that the 
best 5000 hectares are to be selected. This could be achieved by choosing 
that set of raster cells, totaling 5000 hectares, in which the sum of 
suitabilities is maximized. It could equally be achieved by rank ordering the 
cells and taking enough of the highest ranked cells to produce a total of 
5000 hectares. The former might be called a choice function (known as an 
objective function of performance index in the mathematical programming 
literature-see Diamond and Wright, 1989) while the latter might be called a 
choice heuristic. 
 
Choice Function 
Choice functions provide a mathematical means of comparing alternatives. 
Since they involve some form of optimization (such as maximizing or 
minimizing some measurable characteristic), they theoretically require that 
each alternative be evaluated in turn. However; in some instances, 
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techniques do exist to limit the evaluation only to likely alternatives. For 
example, the Simplex Method in linear programming (see Feiring 1986) is 
specifically designed to avoid unnecessary evaluations. 
 
Choice Heuristic 
Choice heuristics specify a procedure to be followed rather than a function to 
be evaluated. In some cases, they will produce an identical result to a choice 
function (such as the ranking example above), while in other cases they may 
simply provide a close approximation. Choice heuristics are commonly used 
because they are often simpler to understand and easier to implement. 
 
Objective 
Decision rules are structured in the context of a specific objective. The 
nature of that objective, and how it is viewed by the decision makers their 
motives} will serve as a strong guiding force in the development of a specific 
decision rule. An objective is thus a perspective that serves to guide the 
structuring of decision rules.  For example we may have the stated objective to 
determine areas suitable for timber harvesting. However; our perspective may be 
one that tries to minimize the impact of harvesting on recreational uses in the area. 
The choice of criteria to be used and the weights to be assigned to them would thus 
be quite different from that of a group whose primary concern was profit 
maximization. Objectives are thus very much concerned with issues of motive and 
social perspective. 
 
Evaluation 
The actual process of applying the decision rule is called evaluation. Mufti-Criteria  
 
Evaluations 
To meet a specific objective, it is frequently the case that several criteria will need to 
be evaluated. Such a procedure is called Multi-Criteria Evaluation (Voogd, 1983; 
Carver, 1991). Another term that is sometimes encountered for this is modeling. 
However; this term is avoided here since the manner in which the criteria are 
combined is very much influenced by the objective of the decision. 
 
Mu1ti-criteria evaluation (MCE) is most commonly achieved by one of two 
procedures. The first involves Boolean overlay whereby all criteria are reduced to 
logic-at statements of suitability and then combined by means of one or more logical 
operators such as intersection (AND) and union (OR). The second is known as 
Weighted Linear Combination (WLC) wherein continuous criteria (factors) are 
standardized to a common numeric range, and then combined by means of a 
weighted average. The result is a continuous mapping of suitability that may then be 
masked by one or more Boolean constraints to accommodate qualitative criteria, and 
finally thresholded to yield a Final decision. 
 
While these two procedures are well established in GIS, they frequently lead to 
different results, as they make very different statements about how criteria should 
be evaluated. In the case of Boolean evaluation, a very extreme form of decision 
making is used. If the criteria are combined with a logical AND (the intersection 
operator), a location must meet every criterion for it to be included in the decision 
set. If even a single criterion fails to be met, the location will be excluded. Such a 
procedure is essentially risk averse, and selects locations based on the most cautious 
strategy possible-a location succeeds in being chosen only if its worst quality (and 
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therefore all qualities) passes the test On the other hand, if a logical OR (union) is 
used, the opposite applies-a location will be included in the decision set even if only 
a single criterion passes the test. This is thus a very gambling strategy, with 
(presumably) substantial risk involved. 
 
Now compare these strategies with that represented by weighted linear combination 
(WLC). With MLC, criteria are permitted to tradeoff their qualities. A very poor quality 
can be compensated for by having a number of very favorable qualities. This 
operator represents neither an AND nor an OR-4t lies somewhere in between these 
extremes. It is neither risk averse nor risk taking. 
 
For reasons that have largely to do with the ease with which these approaches can 
be implemented, the Boolean strategy dominates vector approaches to MCE, while 
WLC dominates solutions in raster systems. But clearly neither is better they simply 
represent two very different outlooks on the decision process----what can be called a 
decision strategy. IDRISI also includes a third option for multi-criteria evaluation, 
known as an Ordered Weighted Average (OWA) (Eastman and Jiang, 1996). This 
method offers a complete spectrum of decision strategies along the primary 
dimensions of degree of tradeoff involved and degree of risk in the solution. 
 
Multi-Objective Evaluations 
While many decisions we make are prompted by a single objective, it also happens 
that we need to make decisions that satisfy several objectives. A multi-objective 
problem is encountered whenever we have two candidate sets (i.e., sets of entities) 
that share members. These objectives may be complementary or conflicting in 
nature (Carver, 1991: 322). 
 
Complementary Objectives 
 
With complementary or non-conflicting objectives, land areas may satisfy more than 
one objective, i.e., an individual pixel can belong to more than one decision set. 
Desirable areas will thus be those which serve these objectives together in some 
specified manner. For example, we might wish to allocate a certain amount of land 
for combined recreation and wildlife preservation uses. Optimal areas would thus be 
those that satisfy both of these objectives to the maximum degree possible. 
 
Conflicting Objectives 
With conflicting objectives, competion occurs for the available land since it can be 
used for one objective or the other but not both. For example, we may need to 
resolve the problem of allocating land for timber harvesting and wildlife preservation. 
Clearly the two cannot coexist. Exactly how they compete, and on what basis one 
will win out over the other, will depend upon the nature of the decision rule that is 
developed. 
 
In cases of complementary objectives, multi-objective decisions can often be solved 
through a hierarchical extension of the multi-criteria evaluation process. For 
example, we might assign a weight to each of the objectives and use these, along 
with the suitability maps developed for each, to combine them into a single suitability 
map. This would indicate the degree to which areas meet all of the objectives 
considered (see Voogd, 1983). However, with conflicting objectives the procedure is 
more involved. 
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With conflicting objectives, it is sometimes possible to rank order the objectives and 
reach a prioritized solution (Rosenthal, 1985). In these cases, the needs of higher 
ranked objectives are satisfied before those of lower ranked objectives are dealt 
with. However; this is often not possible, and the most common solution for 
conflicting objectives is the development of a compromise  solution. Undoubtedly the 
most commonly employed techniques for resolving conflicting objectives are those 
involving optimization of a choice function such as mathematical programming 
(Fiering, 1986) or goal programming (Igniziq 1985). In both, the concern is to 
develop an allocation of the land that maximizes or minimizes an objective function 
subject to a series of constraints. 
 
Uncertainty and Risk 
Clearly, information is vital to the process of decision making. Howeve~ we rarely 
have perfect information. This leads to uncertainty, of which two sources can be 
identified: database and decision rule uncertainly. 
 
Database Uncertainty 
Database uncertainty is that which resides in our assessments of the criteria which 
are enumerated in the decision rule. Measurement error is the primary source of 
such uncertainty. For example, a slope of 35% may represent an important threshold 
However, because of the manner in which slopes are determined, there may be 
some uncertainty about whether a slope that was measured as 34% really w 34%. 
While we may have considerable confidence that it is most likely around 34%, we 
may also need to admit that there is some finite probability that it is as high as 36%. 
Our expression of database uncertainty is likely to rely upon probability theory. 
 
Decision Rule Uncertainty 
Decision rule uncertainty is that which arises from the manner in which criteria are 
combined and evaluated to reach a decision. A very simple form of decision rule 
uncertainty is that which relates to parameters or thresholds used in the decision 
rule. A more complex issue is that which relates to the very structure of the decision 
rule itself. This is sometimes called specification error (Alonsq 1968), because of 
uncertainties that arise in specifying the relationship between criteria (as a model) 
such that adequate evidence is available for the proper evaluation of the hypotheses 
under investigation. 
 
Decision Rule Uncertainty and Direct Evidence: Fuzzy versus Crisp Sets 
A key issue in decision rule uncertainty is that of establishing the relationship 
between the evidence and the decision set. In most cases, we are able to establish a 
direct relationship between the two, in the sense that we can define the decision set 
by measurable attributes that its members should possess. In some cases these 
attributes are crisp and unambiguous. For example, we might define those sewer 
lines in need of replacement as those of a particular material and age. However; 
quite frequently the attributes they possess are fuzzy rather than crisp. For example, 
we might define suitable areas for timber logging as those forested areas that have 
gentle slopes and are near to a road. What is a gentle slope? If we specify that a 
slope is gentle if it has a gradient of less than 5%, does this mean that a slope of 
5.0001 °lo is not gentle? Clearly there is no sharp boundary here. Such classes are 
called fuzzy sets (Zadeh, 1965) and are typically defined by a set membership 
function. Thus we might decide that any slope less than 2% is unquestionably 
gentle, and that any slope greater than 10% is unquestionably steep, but that 
membership in the gentle set gradually falls from 1.0 at a 2% gradient to 0.0 at a 
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10% gradient. A slope of 5% might then be considered to have a membership value 
of only 0.7 in the set called "gentle." A similar group of considerations also surround 
the concept of being "near" to a road. 

Fuzzy sets are extremely common in the decision problems faced with GIS. They 
represent a form of uncertainty, but it is not measurement uncertainty. The issue of 
what constitutes a shallow slope is over and above the issue of whether a measured 
slope is actually what is recorded It is a form of uncertainty that lies at the very 
heart of the concept of factors previously developed. The continuous-factors of 
multi-criteria  decision making are thus fuzzy set membership functions, whereas 
Boolean constraints are crisp set membership functions.  But it should be 
recognized that the terms factor and constraint imply more than fuzzy or crisp 
membership functions. Rather, these terms give some meaning also to the manner 
in which they are aggregated with other information. 

 
Decision Rule Uncertainty and Indirect Evidence: Bayes versus Dempster 
Shafer 
Not all evidence can be directly related to the decision set. In some instances we 
only have an indirect relationship between the two. In this case, we may set up what 
can be called a belief function of the degree to which evidence implies the 
membership in the decision set. Two important tools for accomplishing this are 
Bayesian Probability Theory and Dempster-Shafer Theory of Evidence. These will be 
dealt with at more length later in this chapter in Part B on Uncertainty Management. 

 

 

 
Decision Risk 
Decision Risk may be understood as the likelihood that the decision made will be 
wrong. Risk arises as a result of uncertainty, and its assessment thus requires a 
combination of uncertainty estimates from the various sources involved (database 
and decision rule uncertainty) and procedures, such as Bayesian Probability theory 
through which it can be determined. 
 
A Typology of Decisions 

Given these definitions, it is possible to set out awry broad typology of 
decisions. 
 
 
 Single Criterion Multi-Criteria 
Single Objective   
Multi-Objective   
 
 
Decisions may be characterized as sing e- or multi-objective in nature, based 
on either a single criterion or multiple criteria. While one is occasionally concerned 
with single criterion problems, most problems approached with a GIS are multi-
criteria in nature. For example, we might wish to identify areas of concern for soil 
erosion on the basis of slope, land use, soil type and the like. In these instances, 
our concern lies with how to combine these criteria to arrive at a composite 
decision. As a consequence, the first major area of concern in GIS with regard to 
Decision Theory is Multi-Criteria Evaluation. 

l
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Most commonly, we deal with decision problems of this nature from a single 
perspective. However; in many instances, the problem is actually multi-objective in 
nature (Diamond and Wright, 1988). Multi-objective problems arise whenever the 
same resources belong to more than one candidate set. Thus, for example, a paper 
company might include all forest areas in its candidate set for consideration of 
logging areas, while a conservation group may include forest areas in a larger 
candidate set of natural areas to be protected Any attempt, therefore, to reconcile 
their potential claims to this common set of resources presents a multi-objective 
decision problem. 
 
Despite the prevalence of multi-objective problems, current GIS software is 
severely lacking in techniques to deal with this kind of decision. To date, most 
examples of multi-objective decision procedures in the literature have dealt with 
the problem through the use of linear programming optimization (e.g., Janssen and 
Rietveld 1990; Carvei; 1991; Campbell et. al., 1992; Wright et. al., 1983). However 
in most cases, these have been treated as choice problems between a limited 
number (e.g., less than 20) of candidate sites previously isolated in a vector 
system. The volume of data associated with raster applications (where each pixel is 
a choice alternative) clearly overwhelms the computational capabilities of today's 
computing environment. In addition, the terminology and procedures of linear 
programming are unknown to most decision makers and are complex and 
unintuitive by nature. As a consequence, the second major area of Decision Theory 
of importance to GIS is Multi-Objective Land Allocation. Here, the focus will be on a 
simple decision heuristic appropriate to the special needs of raster GIS. 
 
CHAPTER 4. Decision Support System 
 
Deliverable Decision Support System 

Abstract 

This action’s objective is the development of a Desertification Decision Support System.  This 
system will combine the knowledge acquired through all previous actions and will be based on 
the rules and guidelines depicted in the Desertification Risk Monitoring Model, in order to 
provide support to any decision-making body, planning to take actions against desertification.   
 
The Decision Support System that includes the Spatial Multi-criteria Weighed Model will be 
developed in order to describe the above-mentioned methodology and depict the Driving 
Forces, the Pressures and the Impacts on Desertification Risks. 
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Multi-Criteria Decision Making in GIS 
 
As indicated earlier, the primary issue in multi-criteria evaluation is concerned with 
how to combine the information from several criteria to form a single index of 
evaluation. In the case of Boolean criteria (constraints), the solution usually lies in 
the union (logical OR) or intersection (logical AND) of conditions. However, for 
continuous factors, a weighted linear combination (Voogd, 1983: 120) is most 
commonly used. 'With a weighted linear combination, factors are combined by 
applying a weight to each followed by a summation of the results to yield a 
suitability map, i.e.: 

 
S = Σwixi where  S = suitability 
 wi = weight of factor i 
 xi = criterion score of factor i 
 

This procedure is not unfamiliar in GIS and has a form very similar to the nature of 
a regression equation. In cases where 
 
Boolean constraints also apply, the procedure can be modified by multiplying the 
suitability calculated from the factors by the product of the constraints, i.e.: 
 
S = Σwixi*Πci where  c = criterion score of constraint j 
                                                       Π = product 
 
 
All GIS software systems provide the basic tools for evaluating such a model. In 
addition, in IDRISI, a special module named MCE has been developed to facilitate 
this process. However, the MCE module also offers a special procedure called an 
Ordered Weighted Average that greatly extends the decision strategy options 
available. The procedure will be discussed more fully in the section on Evaluation 
below. For now, however; the primary issues relate to the standardization of criterion 
scores and the development of the weights. 
 
Criterion Scores 
Because of the different scales upon which criteria are measured, it is necessary that 
factors be standardized before combination using the formulas above, and that they 
be transformed, if necessary, such that all factors maps are positively correlated with 
suitability. Voogd (1983: 77-$4) reviews a variety of procedures for standardization, 
typically using the minimum and maximum values as scaling points. The simplest is a 
linear scaling such as: 
 
Xi = (Ri-Rmin) / (Rmax.-Rmin) * standardized range where R= raw score 
 
However; if we recognize that continuous factors are really fuzzy sets, we easily 
recognize this as just one of many possible set membership functions. In IDRISI, the 
module named FUZZY is provided for the standardization of factors using a whole 
range of fuzzy set membership functions. The module is quick and easy to use, and 
provides the option of standardizing factors to either a 0-1 real number scale or a 0-
255 byte scale. This latter option is recommended because the MCE module has 
been optimized for speed using a 0-255 level standardization. Importantly, the 
higher value of the standardized scale must represent the case of being more likely 
to belong to the decision set 
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A critical issue in the standardization of factors is the choice of the end points at 
which set membership reaches either 0.0 or 1.0 (or 0 and 255). Our own research 
has suggested that blindly using a linear scaling (or indeed any other scaling) 
between the minimum and maximum values of the image is ill advised In setting 
these critical points for the set membership function, it is important to consider their 
inherent meaning. Thus, for example, if we feel that industrial development should 
be placed as far away from a nature reserve as possible, it would be dangerous to 
implement this without careful consideration. Taken literally if the map were to cover 
a range of perhaps 100 km from the reserve, then the farthest point away from the 
reserve would be given a value of 1.0 (or 255 for a byte scaling). Using a linear 
function, then, a location 5 km from the reserve would have a standardized value of 
only 0.05 (13 for a byte scaling). And yet it may be that the primary issue was noise 
and minor disturbance from local citizens, for which a distance of only 5 kilometers 
would have been equally as good as being 100 km away. Thus the standardized 
score should really have been 1.0 (155). If an MCE were undertaken using the blind 
linear scaling, locations in the range of a few 10s of km would have been severely 
devalued when it fact they might have been quite good. In this case, the 
recommended critical points for the scaling should have been 0 and 5 km. In 
developing standardized factors using FUZZY, then, careful consideration should be 
given to the inherent meaning of the end points chosen. 
 
Criterion Weights 
A wide variety of techniques exist for the development of weights. In very simple 
cases, assigning criteria weights may be accomplished by dividing 1.0 among the 
criteria. (It is sometimes useful for people to think about "spending" one dollar, for 
example, among the criteria). However, when the number of criteria is more than a 
few, and the considerations are many it becomes quite difficult to make weight 
evaluations on the set as a whole. Breaking the information down into simple 
pairwise comparisons in which only two criteria need be considered at a time can 
greatly facilitate the weighting process, and will likely produce a more robust set of 
criteria weights. A pairwise comparison method has the added advantages of 
providing an organized structure for group discussions, and helping the decision 
making group hone in on areas of agreement and disagreement in setting criterion 
weights. 
 
The technique described here and implemented in IDRISI is that of pairwise 
comparisons developed by Saaty (1977) in the context of a decision making 
process known as the Analytical Hierarchy Process (AHP). The first introduction of 
this technique to a G IS application was that of Rao et. al. (1991), although the 
procedure was developed outside the GIS software using a variety of analytical 
resources. 
 
In the procedure for Multi-Criteria Evaluation using a weighted linear combination 
outlined above, it is necessary that the weights sum to one. In Saaty's technique, 
weights of this nature can be derived by taking the principal eigenvector of a 
square reciprocal matrix of pairwise comparisons between the criteria. The 
comparisons concern the relative importance of the two criteria involved in 
determining suitability for the stated objective Ratings are provided on a 9-point 
continuous scale (Figure 12-2). For example, if one felt that proximity to roads was 
very strongly more important than slope gradient in determining suitability for 
industrial siting, one would enter a 7 on this scale. If the inverse were the case 

 



  

  

                                        

                             

                                                                      

COFINANCED BY THE EUROPEAN REGIONAL DEVELOPMENT FUND 
(slope gradient was very strongly more important than proximity to roads), one 
would enter 1/7. 

SAATY SCALE 
 
In developing the weights, an individual or group compares every possible pairing 
and enters the ratings into a pairwise comparison matrix (Figure 12-3). Since the 
matrix is symmetrical, only the lower triangular half actually needs to be filled in. 
The remaining cells are then simply the reciprocals of the lower triangular half (for 
example, since the rating of slope gradient relative to town proximity is 4, the 
rating of town proximity relative to slope gradient will be 1/4). Note that where 
empirical evidence exists about the relative efficacy of a pair of factors, this 
evidence can also be used. 

 
 
 
 
 
 
 
 
 
 
 
 

An example of a pairwise comparison matrix for assessing the comparative 
importance of five factors to industrial development suitability 
 
The procedure then requires that the principal eigenvector of the pain.vise 
comparison matrix be computed to produce a tiest,fit set of weights (Figure 12-4). If 
no procedure is available to do this, a good approximation to this result can be 
achieved by calculating the weights with each column and then azreraging over all 
columns. For example, if we take the first column of figures, they sum to 2.98. 
Dividing each of the entries in the first column by 2.98 yields weights of 0.34, 0.11, 
0.34, 0.05, and 0.17 (compare to the values in Figure 12-4). Repeating this for each 
column and averaging the weights over the columns usually gives a good 
approximation to the values calculated by the principal eigenvector. In the ,sase of 
IDRISI, however a special module named WEIGHT has been developed to calculate 
the principal eigenvector directly. Note that these weights will sum to one, as is 
required by the weighted linear combination procedure. 
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Weights derived by calculating the principal eigenvector of the pairwise 
comparison matrix 
 
Since the complete pairwise comparison matrix contains multiple paths by which the 
relative importance of criteria can be assessed, it is also possible to determine the 
degree of consistency that has been used in developing the ratings. Saaty (1977) 
indicates the procedure by which an index of consistency, known as a consistency 
ratio can be produced (Figure 124). The consistency ratio (CR) indicates the 
probability that the matrix ratings were randomly generated. Saaty indicates that 
matrices with CR ratings greater than 0.10 should be re-evaluated. In addition to the 
overall consistency ratio, it is also possible to analyze the matrix to determine where 
the inconsistencies arise. This has also been developed as part of the WEIGHT 
module in IDRISI. 
 
Evaluation 
Once the criteria maps (factors and constraints) have been developed, an evaluation 
(or aggregation) stage is undertaken to combine the information from the various 
factors and constraints. The MCE module offers three logics for the evalu-
ation/aggregation of multiple criteria: Boolean intersection, weighted linear 
combination (WLC), and the ordered weighted average (OWA). 
 
MCE and Boolean Intersection 
The most simplistic type of aggregation is the Boolean intersection or logical AND. 
This method is used only when factor maps have been strictly classified into Boolean 
suitable/unsuitable images with values 1 and 0. The evaluation is simply the 
ultiplication of all the images. 
 
MCE and Weighted Linear Combination 
The derivation of criterion (or factor) weights is described above. The weighted 
linear combination (WLC) aggregation method multiplies each standardized factor 
map (i.e, each raster cell within each map) by its factor weight and then sums the 
results. Since the set of factor weights for an evaluation must sum to one, the 
resulting suitability map will have the same range of values as the standardized 
factor maps that were used This result is then multiplied by each of the constraints 
in turn to "mask out" unsuitable areas. All these steps could be done using either a 
combination of SCALAR and OVERLAY, or by using the Image Calculator However, 
the module MCE is designed to facilitate the process. 
 
The WLC option in the MCE module requires that you specify the number of criteria 
(both constraints and factors), their names, and the weights to be applied to the 
factors. All factors must be standardized to a byte (0-255) range. (If you have 
factors in real format, then use one of the options other than MCE mentioned above) 
The output is a suitability map masked by the specified constraints. 
 
MCE and the Ordered Weighted Average 
In its use and implementation, the ordered weighted average approach is not unlike 
WLC. The dialog box for the OWA option is almost identical to that of WLC, with the 
exception that a second set of weights appears. This second set of weights, the 
order weights controls the manner in which the weighted factors are aggregated 
(Eastman and Jiang, 1996; Yagm 1988). Indeed, WLC turns out to be just one 
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variant of the OWA technique. To introduce the OWA technique, let's first review 
WLC in terms of two new concepts: tradeoff and risk 
 
Tradeoff 
Factor weights are weights that apply to specific factors, i.e., all the pixels of a 
particular factor image receive the same factor weight They indicate the relative 
degree of importance each factor plays in determining the suitability for an objective. 
In the case of WLC the weight given to each factor also determines how it will 
tradeoff relative to other factors. For example, a factor with a high factor weight can 
tradeoff or compensate for poor scores on other factors, even if the unweighted 
suitability score for that highly-weighted factor is not particularly good. In contrast, a 
factor with a high suitability score but a small factor weight can only weakly 
compensate for poor scores on other factors. The factor weights determine how 
factors tradeoff but; as described below, order weights determine the overall level of 
tradeoff allowed 
 
Risk 
Boolean approaches are extreme functions that result either in very risk-averse 
solutions when the AND operator is used or in risk taking solutions when the OR 
operator is used. In the former a high aggregate suitability score for a given location 
(pixel) is only possible if a11 factors have high scores. In the latter a high score in 
any factor will yield a high aggregate score, even if all the other factors have very 
low scores. The AND operation may be usefully described as the minimum, since the 
minimum score for any pixel determines the final aggregate score. Similarly the OR 
operation may be called the maximum,  since the maximum score for any pixel 
determines the final aggregate score. The AND solution is risk-averse because we 
can be sure that the score for every factor is at least as good as the final aggregate 
score. The OR solution is risk-taking  because the final aggregate score only tells us 
about the suitability score for the single most suitable factor. 
 
The WLC approach is an averaging technique that softens the hard decisions of the 
boolean approach and avoids the extremes. In fact, given a continuum of risk from 
minimum to maximum, %LC falls exactly in the middle; it is neither risk averse nor 
risk taking. 
 
Order Weights, Tradeoff and Risk 
The use of order weights allows for aggregation solutions that fall anywhere along 
the risk continuum between AND and OR Order weights are quite different from 
factor weights. They do not apply to any specific factor. Rather, they are applied on 
a pixel-by-pixel basis to factor scores as determined by their rank ordering across 
factors at each location (pixel). Order weight 1 is assigned to the lowest ranked 
factor for that pixel (i.e., the factor with the lowest score), order weight 2 to the next 
higher-ranked factor for that pixel, and so forth. Thus, it is possible that a single 
order weight could be applied to pixels from any of the various factors depending 
upon their relative rank order. 
To examine how order weights alter MCE results by controlling levels of tradeoff and 
risk, let us consider the case where factor weights are equal for three factors A, B~ 
and C. (Holding factor weights equal will make clearer the effect of the order 
weights.) Consider a single pixel with factor scores A= 187, B=174, and C=201. The 
factor weights for each of the factors is 0.33. When ranked from minimum value to 
maximum value, the order of these factors for this pixel is [B,A,C]. For this pixel, 
factor B will be assigned order weight 1, A order weight 2 and C order weight 3. 
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Below is a table with thirteen sets of order weights that have been applied to this set 
of factor scores [174,187,201]. Each set yields a different MCE result even though 
the factor scores and the factor weights are the same in each case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first set of order weights in the table is [1, 0, 0]. The weight of factor B (the 
factor with the minimum value in the set [B, A, C]) will receive all possible weight 
while factors A and C will be given no weight at all. Such a set of order weights make 
irrelevant the factor weights. Indeed, the order weights have altered the evaluation 
such that no tradeoff is possible. As can be seen in the table, this has the effect of 
applying a minimum operator to the factors, thus producing the traditional 
intersection operator (AND) of fuzzy sets. 
 
Similarly the last set of order weights [0, 0, 1] has the effect of a maximum operator, 
the traditional union operator (OR) of fuzzy sets. Again, there is no tradeoff and the 
factor weights are not employed. 
 
Another important example from the table is where the order weights are equal, 
[.33, .33, .33]. Here all ranked positions get the same weight; this makes tradeoff 
fully possible and locates the analysis exactly midway between AND and OR Equal 
order weights produce the same result as WLC. 
 
In all three cases the order weights have determined not only the level of tradeoff 
but have situated the analysis on a continuum from (risk-averse, minimum, AND) to 
(risk taking, maximum, OR). 
 
As seen in the table, the order weights in the OWA option of MCE are not restricted 
to these three possibilities, but instead can be assigned any combination of values 
that sum to 1.0. Any assignment of order weights results in a decision rule that falls 
somewhere in a triangular decision strategy space that is defined by the dimensions 
of risk and tradeoff as shown in Figure 12-5. 
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Whether most of the order weight is assigned to the left, right or center of the 
order weights determines the position in the risk dimension. The logical AND 
operator is the most risk averse combination and the logical OR is the most risk-
taking combination. When order weights are predominantly assigned to the lower-
ranked factors, there is greater risk aversion (more of an AND approach). 'When 
order weights are more dominant for the higher-ranked factors, there is greater 
risk taking (more of an OR approach). As discussed above, equal order weights 
yield a solution at the middle of the risk axis. 
 
The degree of tradeoff is governed by the relative distribution of order weights 
between the ranked factors. Thus, if the sum of the order weights is evenly spread 
between the factors, there is strong tradeoff, whereas if all the weight is assigned 
to a single factor rank, there is no tradeoff. (It may be helpful to think of this in 
terms of a graph of the order weights, with rank order on the X axis and the order 
weight value on the Y axis. If the graph has a sharp peak, there is little tradeoff. If 
the graph is relatively flat, there is strong tradeoff). 
 
Thus, as seen from the table, the order weights of [0.5 0.3 0.2] would indicate a 
strong (but not perfect) degree of risk aversion (because weights are skewed to 
the risk averse side of the risk axis) and some degree of tradeoff (because the 
weights are spread out over all three ranks). Weights of [0 1 0], however, would 
imply neither risk aversion nor acceptance (exactly in the middle of the risk axis), 
and no tradeoff (because all the weight is assigned to a single rank). 
 
The OWA method is particularly interesting because it provides this continuum of 
aggregation procedures. At one extreme (the logical AND), each criterion is 
considered necessary (but not sufficient on its own} for inclusion in the decision set 
At the other extreme (the logical OR), each criterion is sufficient on its own to 
support inclusion in the decision set without modification by other factors. The 
position of the weighted linear combination operator halfway between these 
extremes is therefore not surprising. This operator considers criteria as neither 
necessary nor sufficient strong support for inclusion in the decision set by one 
criterion can be equally balanced by correspondingly low support by another. It 
thus offers full tradeoff. 
 
Using OWA 
Given this introduction, it is worth considering how one would use the OWA option 
of MCE. Some guidelines are as follows: 
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1. Divide your criteria into three groups: hard constraints, factors that should not 
tradeoff and factors that should tradeoff. For example, factors with monetary 
implications typically tradeoff, while those associated with some safety concern 
typically do not. 
2. If you find that you have factors that both tradeoff and do not tradeoff, separate 
their consideration into two stages of analysis. In the First, aggregate the factors 
that tradeoff using the OWA option. You can govern the degree of tradeoff by 
manipulating the order weights. Then use the result of the first stage as a new factor 
that is included in the analysis of those that do not tradeoff. 
3. If you run an analysis with absolutely no tradeoff, the factor weights have no real 
meaning and can be set to any value.  
 
Completing the Evaluation 
Once a suitability map has been prepared, it is common to decide, as a final step~ 
which cells should belong to the set that meets a particular land allocation area 
target (the decision set). For example, having developed a map of suitability for 
industrial development, we may then wish to determine which areas constitute the 
best 5000 hectares that may be allocated. Oddly, this is an area where most raster 
systems have difficulty achieving an exact solution. One solution would be to use a 
choice function where that set of cells is chosen which maximizes the sum of 
suitabilities. However, the number of combinations that would need to be evaluated 
is prohibitive in a raster GIS. As a result, we chose to use a simple choice heuristic--
to rank order the cells and choose as many of the highest ranks as will be required 
to meet the area target In IDRISI, a module named RANK is available that allows a 
rapid ranking of cells within an image. In addition, it allows the use of a second 
image to resolve the ranks of ties. The ranked map can then be reclassified to 
extract the highest ranks to meet the area goal. 
 
Multi-Objective Decision Making in GIS 
 
Multi-objective decisions are so common in environmental management that it is 
surprising that specific tools to address them have not yet been further developed 
within GIS. The few examples one finds in the literature tend to concentrate on the 
use of mathematical programming tools outside the GIS, or are restricted to cases of 
complementary objectives.  
 
Complementary Objectives 
As indicated earlier, the case of complementary objectives can be dealt with quite 
simply by means of a hierarchical extension of the multi-criteria evaluation process 
(e.g., Carver, 1991). Here a set of suitability maps, each derived in the context of a 
specific objective, serve as the factors for a new evaluation in which the objectives 
are themselves weighted and combined by linear summation. Since the logic which 
underlies this is multiple use, it also makes sense to multiply the result by all 
constraints associated with the component objectives. 
 
Conflicting Objectives 
With conflicting objectives, land can be allocated to one objective but not more than 
one (although hybrid models might combine complementary and conflicting 
objectives). As was indicated earlier, one possible solution lies with a prioritization of 
objectives (Rosenthal, 1985). After the objectives have been ordered according to 
prior# the needs of higher priority objectives are satisfied (through rank ordering of 
cells and reclassification to meet areal goals) before those of lower priority ones. This 
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is done by successively satisfying the needs of higher priority objectives and then 
removing (as a new constraint) areas taken by that objective from consideration by 
all remaining objectives. A prioritized solution is easily achieved with the use of the 
RANK, RECLASS and OVERLAY modules in IDRISI. However, instances are rare 
where a prioritized solution makes sense. More often a compromise solution is 
required. 
 
As noted earlier, compromise solutions to the multi-objective problem have most 
commonly been approached through the use of mathematical programming tools 
outside GIS (e.g., Diamond and Wright, 1988; Janssen and Rietveld, 1990; Campbell, 
et. al., 1992). Mathematical programming solutions (such as linear or integer 
programming) can work quite well in instances where only a small number of 
alternatives are being addressed. However, in the case of raster GIS, the massive 
data sets involved will typically exceed present-day computing power In addition, the 
concepts and methodology of linear and integer programming are not particularly 
approachable to a broad range of decision makers. As a result, we have sought a 
solution to the problem of multi-objective land allocation under conditions of 
conflicting objectives such that large raster datasets may be handled using 
procedures that have an immediate intuitive appeal. 
 
The procedure we have developed is an extension of the decision heuristic 
used for the allocation of land with single objective problems. This is best 
illustrated by the diagram in the below Figure 12a. Each of the suitability maps 
may be thought of as an axis in a multi-dimensional space. Here we consider 
only two objectives for purposes of simple explanation. However any number 
of objectives can be used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

              Figure 12a                                         Figure 12a 
 
 
Every raster cell in the image can be located within this decision space 
according to its suitability level on each of the objectives. To find the best x 
hectares of land for the Objective 1, we simply need to move a decision line 
down from the top (i.e., far right) of the Objective 1 suitability axis until 
enough of the best raster cells are captured to meet our area target. We can 
do the same with the Objective 2 suitability axis to capture the best y hectares 
of land for it As can be seen in Figure 12a, this partitions the decision space 
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into four regions-areas best for Objective 1 and not suitable for Objective 2. 
areas best for Objective 2 and not suitable for Objective 1, areas not suitable 
for either, and areas judged best for both. The latter represents areas of 
conflict. 
 
To resolve these areas of conflict, a simple partitioning of the affected cells is 
used. As can be seen in Figure 12b the decision space can also be partitioned 
into two further regions: those closer to the ideal point for Objective 1 and 
those closer to that for Objective 2. The ideal point represents the best 
possible case-a cell that is maximally suited for one objective and minimally 
suited for anything else. To resolve the conflict zone, the line that divides 
these two regions is overlaid onto it and cells are then allocated to their 
closest ideal point. Since the conflict region will be divided between the 
objectives, both objectives will be short on achieving their area goals. As a 
result, the process will be repeated with the decision lines being lowered for 
both objectives to gain more territory. The process of resolving conflicts and 
lowering the decision lines is iteratively repeated until the exact area targets 
are achieved. 
 
It should be noted that a 45-degree line between a pair of objectives assumes 
that they are given equal weight in the resolution of conflicts. However, 
unequal weighting can be given. Unequal weighting has the effect of changing 
the angle of this dividing line In fact, the tangent of that angle is equal to the 
ratio of the weights assigned to those objectives. 
 
It should also be noted that just as it was necessary to standardize criteria for 
multi-criteria evaluation, it is also required for multi-objective evaluation. The 
process involves a matching of the histograms for the two suitability maps. In 
cases where the distributions are normal, conversion to standard scores (using 
the module named STANDARD) would seem appropriate. However, in many 
cases, the distributions are not normal. In these cases, the matching of 
histograms is most easily achieved by a non-parametric technique known as 
histogram equalization. This is a standard option in many image processing 
systems such as IDRISI. However; it is also the case that the ranked suitability 
maps produced by the RANK module are also histogram equalized (i.e., a 
histogram of a rank map is uniform). This is fortuitous since the logic outlined 
in Figure 12a is best achieved by reclassification of ranked suitability maps. 
 
As a result of the above considerations, the module named MOLA (Multi-
0bjective Land Allocation) was developed to undertake the compromise 
solution to the multi-obiective problem. MDLA requires the names of the 
objectives and their relative weights, the names of the ranked suitability 
maps for each, and the areas that should be allocated to each. It then 
iteratively reclassifies the ranked suitability maps to perform a first stage 
allocation, checks for conflicts, and then allocates conflicts based on a 
minimum-distance-to-ideal-point rule using the weighted ranks. 
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CHAPTER 5 . Desertification Decision Support System 
 
Requirements Analysis  
 
Introduction 
 
Purpose of this document 
 
Purpose of this document is to provide an analysis of the requirements of the 
Desertification Decision Support System (DSS).  
 
Overview 
 
The system’s objective is to combine the knowledge acquired through all previous 
actions and to provide support to any decision-making body, planning to take actions 
against desertification, based on the rules and guidelines depicted in the 
Desertification Risk Monitoring Model.  
 
General Description 
 
Product functions 
 
The produced system will comprise of three main components: 
 

1. A Multicriteria Decision Support component based on the Analytic Hierarchy 
Process (AHP) by Thomas Saaty. 

2. A site location component that will enable the user to locate a site, based on a 
series of criteria. 

3. A site location component that will enable the user to locate a site, based on 
weighted criteria. 

 
User characteristics 
 
The system aims to any decision-making body planning to take action against 
desertification. The system users should have at least a basic knowledge of 
Geographical Information Systems (GIS) and GIS related software.  
 
Functional Requirements 
 
Application Requirements 
 

• The application should work as an extension to the existing GIS software, 
enabling thus the user to directly observe and manipulate the produced results. 

• The user should be able to use all the tools provided by the GIS software 
before and after using the Desertification Decision Support System.  

• Compatibility with raster files: The available data (criteria) will be available in 
raster file format. 
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AHP Component 
 

• Criteria comparison through a pair-wise comparison matrix. Criteria weighting 
will use the Saaty scale1 as a scale of comparison.  

• Normalization of the comparison results through a process of principal 
component analysis.  

• Option to filter the final result with the use of a constraint map. A constraint 
map is a raster format file with values 0 and 1. The areas with value 0 are to be 
excluded from the final result while the areas with value equal to 1 will remain 
intact.  

• The output of the application should be maps in raster format that will depict 
the result.  

 
Site Location Component 
 

• A criteria selection component will enable the user to choose from a list of 
available criteria.  

• A criteria definition component will enable the user to define the specific 
constrains for each criterion.  

• The output of the application should be maps in raster format. Areas with 
higher values represent areas the satisfy the largest number of criteria. 

 
Weighted Site Location Component 
 

• Criteria selection component 
• Criteria definition component. 
• Criteria weighting component. 
• The output of the application should be maps in raster format. Areas with 

higher values represent areas the satisfy the largest number of criteria. 
 
Non-Functional Requirements 
 
Design Constraints 
 
Standards Compliance 
 

• The application should be developed as an extension to the ArcMap software 
by ESRI. 

• The data to be manipulated from the system should be in raster file format. 
Both output and input maps should be in the raster file format.  

 
Hardware limitations 
 

• The application should work on PC systems with Microsoft Windows 2000 or 
later operating system. 

                                                 
1 Saaty, T.L., (1977). “A scaling method for priorities in hierarchical structures”.  Journal of 

Mathematical Psychology, 15, pp. 231-281 
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Algorithm Description 
 
General Description 
 
The developed application should function as an extension to the existing GIS 
software. The user should be able to activate the application through a link in the 
Graphical User Interface (GUI) of the existing GIS software. The main screen of the 
application should allow the user to choose one of the three available functions: AHP 
Multicriteria application, site location application and weighted site location 
application. The results of the application should appear on the GIS software user 
interface enabling thus the user to directly access and process them through the GIS 
software. Figure 1 depicts the relationships between the components of the system 
and the existing GIS software.  

GIS Software DSS

AHP 
Application 

Site Location Site Location 
with Weights 

 
Figure 1: The architecture of the system 

 
 
The Analytic Hierarchy Process 
 
The Analytic Hierarchy Process (AHP) is a Multi-Criteria Decision support method 
that was developed by Prof. Thomas Saaty. AHP uses paired comparisons in order to 
calculate the weights of multiple criteria. It has an advantage over other multi-criteria 
methods as it can also calculate the consistency ratio, which detects the possible 
inconsistencies in the comparison. The weights of the criteria are derived from the 
principal Eigen Vectors and the consistency ratio is derived from the principal Eigen 
value.  
 
Process Description 
 
All criteria that take part in the analysis are compared pair-wise with the use of a 
comparison matrix allowing the user to express the relative preference of one factor 
against another by using numerical values. The numerical values that are used in the 
comparison are values emerging from the SAATY scale (Table 1). Saaty proposed a 
scale of comparison consisting of values ranging from 1 to 9 which describe the 
importance of one factor against another.  
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Table 1: The SAATY Scale 
 
Value Importance 
1 Equal 
3 Moderate 
5 Strong 
7 Very strong 
9 Extreme 
2,4,6,8 Intermediate values 
Reciprocals Values for inverse comparison 
 
 
Table 2 shows an example of a comparison matrix that depicts the comparison of 
three criteria C1, C2 and C3. C1 is set to have strong importance (value 5) against C2 
and moderate to strong importance (value 4) against C3. C2 is set to have equal to 
moderate importance against C3 (value 2). The inverse positions of the table 
automatically get a reciprocal value (0.2, 0.25 and 0.5)  
 
Table 2: The Comparison Matrix 
 
Criteria C1 C2 C3 
C1 1 5 4 
C2 0.2 1 2 
C3  0.25 0.5 1 
    
 
The next step in the Analytic Hierarchy Process involves applying an algorithm that 
yields similar results to that of the principal component analysis. The algorithm 
consists of the following steps: 
 

1. Sum each column of the comparison matrix 
2. Divide each element of the matrix with the sum of its column in order to 

calculate the normalized relative weight 
3. Calculate the average value of each row in order to get the principal Eigen 

value 
4. Sum each row and divide by the number of criteria in order to calculate the 

criteria weights. 
 
Considering the possible number of comparisons in the comparison matrix it is 
possible that inconsistencies may arise mostly due to human error. The AHP process 
offers a consistency ratio (CR) which is a numerical index that aims to detect such 
inconsistencies. CR is defined as the ratio of consistency index (CI) to an average 
consistency index (RI): 

RI
CICR =  

 
The values for RI are related to the order of the comparison matrix. Table 3 shows the 
RI values for a matrix of an order up to 8. 
 
 
 

 



COFINANCED BY THE EUROPEAN REGIONAL DEVELOPMENT FUND 
  

                               

                                                                                                             

Table 3: Values for RI (n=order of matrix) 
 
n 2 3 4 5 6 7 8 
RI 0.00 0.58 0.90 1.12 1.24 1.32 1.41 
 
 
The consistency index can be calculated from the comparison matrix using the 
following formula: 

1
max

−
−

=
n

nCI λ  

where  
λmax:  greatest Eigenvalue of the preference matrix 

 n:  order of matrix 
 
A revision of the preference matrix is recommended if the consistency ratio (CR) 
exceeds a value of 0.1. 
 
 
Architecture 
 
Figure 2 depicts the AHP component architecture and the relationships between each 
individual component. 
 

AHP 
Application

Raster 
Reclassification  

Criteria Selection
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Figure 2: AHP component architecture 

 
 

Site Location 
 
The site location application should work with maps in raster format. Each map 
represents an attribute (e.g. rainfall, slope etc.). The user should be able to select a 
number of attributes and a selection of criteria for each attribute (e.g. rainfall>10, 
slope <20 etc.). The areas that satisfy the criteria should be valued with 1 whereas the 
areas that do not satisfy the criteria should be numbered with zero.  The application 
should perform an addition of the maps that are selected and a new map should be 

 



COFINANCED BY THE EUROPEAN REGIONAL DEVELOPMENT FUND 
  

                               

                                                                                                             

produced (figure 3). The final result should be normalized in a scale of 0 to 1 such as 
1 represents areas that meet all the criteria and 0 represents areas that do not meet any 
of the criteria whereas intermediate numbers represent partial satisfaction of the 
criteria.  
 

INPUT 
(geographical data) 

OUTPUT 
(site location 

map) 

 
Figure 3: Site location application results 

 
 

Figure 4 depicts the architecture of the site location component. 
 
 

 
Figure 4: Site Location component architecture 

 
 

Weighted Site Location 
 
The Weighted Site Location application follows the same steps as the Site Location 
application until the criteria weighting stage. Criteria weighting is achieved through a 
process similar to that of the Analytic Hierarchy Process. The user is prompter with a 
pair-wise comparison matrix in order to define the degree of preference of the criteria 
against each other. The final results are normalized on a scale of 0 to 1, with 0 
representing areas that do not meet any criteria, and 1 satisfying the criteria and the 
preferences defined by the user.  
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Figure 4: Weighted Site Location component architecture 

 
 
CHAPTER 6. Documentation for 

• Data input 
• Data output 
• Expected results 

 
Deliverable Documentation for, Data input, Data output, Expected results 

 

Abstract 

This deliverable includes the documentation for the data input and output, as well 
as the expected results 

 

Data output, input 

 
Data Input 
 
The application takes as an input a varied number of criteria. Each criterion is 
represented by a map in raster format compatible with the ESRI ArcMap raster 
definition. ESRI defines a raster map as a map that “represents features as a matrix of 
cells in continuous space” and proposes the following guidelines:  

• The cell size you use for a raster layer will affect the results of the analysis and 
how the map looks. 

• The cell size should be based on the original map scale and the minimum 
mapping unit.  

• Using too large a cell size will cause some information to be lost.  
• Using a cell size that is too small requires a lot of storage space and takes 

longer to process without adding additional precision to the map. 
 
Raster files that could be used on the application can be either primary raster files or 
maps in vector format that have been converted to raster format.  
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Data Output / Expected Results 
 
The output of the application dependents on the features of the application that are 
going to be used (AHP, Site Location or Detailed Site Location). All of the results 
however are produced in ESRI raster file format. More specifically: 

• AHP produces a map in raster format that displays the relative importance of 
each area on the map (according to the scale provided by the user).  

• Site Location produces a raster map that depicts the number of criteria each 
area satisfies. 

• Detailed Site Location produces a raster map that depicts in detail which 
criteria each area of map satisfies.  

 
All the produced maps are on the same scale, resolution and map unit size as the input 
maps.  
 

 


